Novel Use of Proton Magnetic Resonance Spectroscopy (1HMRS) to Non-Invasively Assess Placental Metabolism

نویسندگان

  • Fiona C. Denison
  • Scott I. Semple
  • Sarah J. Stock
  • Jane Walker
  • Ian Marshall
  • Jane E. Norman
چکیده

BACKGROUND Placental insufficiency is a major cause of antepartum stillbirth and fetal growth restriction (FGR). In affected pregnancies, delivery is expedited when the risks of ongoing pregnancy outweigh those of prematurity. Current tests are unable to assess placental function and determine optimal timing for delivery. An accurate, non-invasive test that clearly defines the failing placenta would address a major unmet clinical need. Proton magnetic resonance spectroscopy ((1)H MRS) can be used to assess the metabolic profile of tissue in-vivo. In FGR pregnancies, a reduction in N-acetylaspartate (NAA)/choline ratio and detection of lactate methyl are emerging as biomarkers of impaired neuronal metabolism and fetal hypoxia, respectively. However, fetal brain hypoxia is a late and sometimes fatal event in placental compromise, limiting clinical utility of brain (1)H MRS to prevent stillbirth. We hypothesised that abnormal placental (1)H MRS may be an earlier biomarker of intrauterine hypoxia, affording the opportunity to optimise timing of delivery in at-risk fetuses. METHODS AND FINDINGS We recruited three women with severe placental insufficiency/FGR and three matched controls. Using a 3T MR system and a combination of phased-array coils, a 20×20×40 mm(1)H MRS voxel was selected along the 'long-axis' of the placenta with saturation bands placed around the voxel to prevent contaminant signals. A significant choline peak (choline/lipid ratio 1.35-1.79) was detected in all healthy placentae. In contrast, in pregnancies complicated by FGR, the choline/lipid ratio was ≤0.02 in all placentae, despite preservation of the lipid peak (p<0.001). CONCLUSIONS This novel proof-of-concept study suggests that in severe placental insufficiency/FGR, the observed 60-fold reduction in the choline/lipid ratio by (1)H MRS may represent an early biomarker of critical placental insufficiency. Further studies will determine performance of this test and the potential role of 1H-MRS in the in-vivo assessment of placental function to inform timing of delivery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic resonance spectroscopy and gliomas

In vivo proton magnetic resonance spectroscopy (1HMRS) can substantially improve the non-invasive categorization of human brain tumors, especially for gliomas. It provides greater information concerning tumor activity and characterization of the tumor tissue than is possible with MRI techniques alone. Moreover, 1HMRS may ultimately prove to be a highly beneficial modality in the post-irradiatio...

متن کامل

Quantitative neuropathology by high resolution magic angle spinning proton magnetic resonance spectroscopy.

We describe a method that directly relates tissue neuropathological analysis to medical imaging. Presently, only indirect and often tenuous relationships are made between imaging (such as MRI or x-ray computed tomography) and neuropathology. We present a biochemistry-based, quantitative neuropathological method that can help to precisely quantify information provided by in vivo proton magnetic ...

متن کامل

Correction: Metabolic Profiling of Dividing Cells in Live Rodent Brain by Proton Magnetic Resonance Spectroscopy (1HMRS) and LCModel Analysis

RATIONALE Dividing cells can be detected in the live brain by positron emission tomography or optical imaging. Here we apply proton magnetic resonance spectroscopy (1HMRS) and a widely used spectral fitting algorithm to characterize the effect of increased neurogenesis after electroconvulsive shock in the live rodent brain via spectral signatures representing mobile lipids resonating at ∼1.30 p...

متن کامل

Advances in High-Field Magnetic Resonance Spectroscopy in Alzheimer’s Disease

Alzheimer's disease (AD) affects several important molecules in brain metabolism. The resulting neurochemical changes can be quantified non-invasively in localized brain regions using in vivo single-voxel proton magnetic resonance spectroscopy (SV 1H MRS). Although the often heralded diagnostic potential of MRS in AD largely remains unfulfilled, more recent use of high magnetic fields has led t...

متن کامل

Assessment of Cerebellar Metabolites Levels in Athletes Compared to Non-Athlete by Proton Magnetic Resonance Spectroscopy

Background: Adaptability to exercise training can increase the plasticity of the brain, and whether this can be due to a beneficial change in the neurometabolites, is uncertain. The purpose of this study was to evaluate basal metabolic concentrations of cerebellum, including N-acetyl aspartate (NAA) and Cholin(Cho) in athletes and compare them with non-athlete subjects. Materials and Methods: I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012